

Effects of Withdrawal on Groundwater in Kaloko-Honokōhau National Historical Park (KAHO), Hawai'i

Delwyn S. Oki

Commission on Water Resource Management April 20, 2021

U.S. Department of the Interior

U.S. Geological Survey

Outline

Map of Groundwater Levels

EXPLANATION

Approximate boundary between inland high water-level area and coastal freshwater-lens system

Inland well—water level greater than about 40 feet above mean sea level

Coastal well—water level generally less than about 3 feet above mean sea level

Conceptual Modes of Groundwater Occurrence

Vertical Salinity Distribution

Selected Groundwater-Dependent Ecosystems

Study Objective

Quantify changes in groundwater discharge and salinity in KAHO for selected scenarios of groundwater withdrawal from and injection of high-salinity water to the coastalfreshwater lens system

https://doi.org/10.3133/sir20215004

Modeled Area

Quantify Changes in Discharge and Salinity

Scenario 1—Simulated <u>Discharge Reduction</u> Caused by 0.5 Mgal/d Withdrawal, Site 1

Scenario 1—Simulated <u>Discharge Reduction</u> Caused by 0.5 Mgal/d Withdrawal, Site 2

Scenario 1—Simulated <u>Discharge Reduction</u> Caused by Independent 0.5 Mgal/d Withdrawal, Sites 1–15

0.153

EXPLANATION

Hypothetical well site of simulated withdrawal of 0.5 million gallons per day (Mgal/d) and simulated freshwater-discharge reduction in KAHO, in Mgal/d

Scenario 1—Simulated <u>Discharge Reduction</u> Caused by 0.5 Mgal/d Withdrawal, Contours

EXPLANATION

—0.10— Line of equal simulated freshwaterdischarge reduction in KAHO caused by withdrawing 0.5 million gallons per day (Mgal/d) at sites on the line, in Mgal/d

Hypothetical well site of simulated withdrawal of 0.5 Mgal/d

Scenario 1—Simulated Salinity Increase Caused by 0.5 Mgal/d Withdrawal

EXPLANATION

— 0.2 — Line of equal simulated salinity increase at damselfly anchialine-pool habitat caused by withdrawing 0.5 million gallons per day (Mgal/d) at sites on the line, in percent of ocean-water salinity

- Hypothetical well site of simulated withdrawal of 0.5 Mgal/d
- Anchialine-pool habitat for orangeblack
 Hawaiian damselfly (*Megalagrion*xanthomelas)

Scenario 2—Simulated <u>Discharge Reduction</u> Caused by 1.0 Mgal/d Withdrawal

EXPLANATION

—0.10— Line of equal simulated freshwaterdischarge reduction in KAHO caused by withdrawing 1.0 million gallons per day (Mgal/d) at sites on the line, in Mgal/d

Hypothetical well site of simulated withdrawal of 1.0 Mgal/d

Scenario 2—Simulated Salinity Increase Caused by 1.0 Mgal/d Withdrawal

EXPLANATION

— 0.2 — Line of equal simulated salinity increase at damselfly anchialine-pool habitat caused by withdrawing 1.0 million gallons per day (Mgal/d) at sites on the line, in percent of ocean-water salinity

- Hypothetical well site of simulated withdrawal of 1.0 Mgal/d
- Anchialine-pool habitat for orangeblack
 Hawaiian damselfly (*Megalagrion*xanthomelas)

Summary and Conclusions

- 1. Withdrawal of additional groundwater from the coastal freshwater-lens system will affect the quality and quantity of groundwater discharge in KAHO
- 2. The magnitude of the hydrologic effect on KAHO caused by withdrawal is rate and site dependent
- 3. The ecologic effects of changes in the quality and quantity of groundwater in KAHO are uncertain
- 4. Our conceptual understanding of groundwater occurrence near KAHO will improve as additional information becomes available

